- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Indice de coïncidence d’un texte
Dans cet exercice, nous étudions l'indice de coïncidence d'un texte, qui représente la probabilité que deux lettres choisies au hasard soient identiques. L'indice de coïncidence est exprimé par la formule Na*(Na-1) / N*(N-1), où Na représente le nombre de lettres A dans le texte, Nz le nombre de lettres Z, et ainsi de suite pour chaque lettre. Pour chaque lettre, il y a deux façons de choisir deux lettres identiques parmi celles de cette lettre, soit deux parmi Na possibilités. Au total, il y a deux façons de choisir deux lettres parmi l'ensemble des lettres du texte, soit deux parmi N possibilités. En simplifiant cette formule, nous obtenons l'expression Na*(Na-1) / N*(N-1) comme l'indice de coïncidence. Cet indice est calculé indépendamment pour chaque lettre, et représente la probabilité d'obtenir deux lettres identiques pour chaque lettre, de A à Z. Cela résume l'exercice sur l'indice de coïncidence.