- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Racines de polynômes
Dans cet exercice, nous devons calculer la probabilité que le polynôme Q, dont les coefficients sont obtenus en lançant trois fois un dé à six faces et en notant les résultats successifs "ABC", ait deux racines réelles distinctes.
Pour cela, nous devons déterminer le nombre total d'issues possibles, qui est de 216 (6^3). Ensuite, nous devons trouver le nombre de cas où B²-4ac est strictement positif, ce qui est nécessaire pour avoir deux racines réelles distinctes. Pour cela, nous listons toutes les valeurs possibles pour 4ac en recensant toutes les valeurs de A et C, et en calculant 4ac pour chaque combinaison. Par exemple, le résultat du calcul pour ABC = 3x4x4 est 48.
Ensuite, nous listons toutes les valeurs possibles pour B et pour chaque valeur, nous comptons combien de cases dans le tableau des calculs de 4ac rendent B²-4ac strictement positif. En ajoutant ces possibilités, on obtient un total de 38. Cela correspond au nombre de cas où B²-4ac est strictement positif et donc à la taille de l'ensemble A. La probabilité de A est donc de 38/216, simplifiée en 19/108.
Nous suivons le même raisonnement pour calculer la probabilité de B, qui est le cas où Q a une racine réelle double (B²-4ac = 0), et pour calculer la probabilité de C, qui est le cas où Q n'a pas de racine réelle (B²-4ac < 0). En effectuant ces calculs, nous obtenons 5/216 pour B et 173/216 pour C.
Conclusion : La probabilité que Q ait deux racines réelles distinctes est donc de 173/216.