- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Jeu équitable
Dans cet exercice, nous étudions principalement l'indépendance entre deux joueurs, A et B, qui s'affrontent dans un jeu. Chaque joueur joue à tour de rôle et le jeu se compose d'au plus N parties. Le joueur qui gagne la première partie gagne le jeu dans son ensemble.
Nous supposons que le joueur A a une probabilité a de gagner et le joueur B a une probabilité b de gagner. De plus, nous supposons que chaque partie est indépendante des autres.
La première question consiste à déterminer la probabilité que ni A ni B ne gagnent, c'est-à-dire qu'aucun des joueurs ne gagne après 2N parties. Pour cela, nous prenons le complémentaire de l'événement A1 (A gagne la première partie), et nous voulons que A perde la première partie, B perde la deuxième partie, etc. Comme les parties sont indépendantes, la probabilité de l'intersection des complémentaires est le produit des probabilités de chaque partie. Cependant, B joue seulement les parties paires, donc la probabilité recherchée est le produit des probabilités de B perdant chaque partie paire.
Nous simplifions ensuite cette expression en remplaçant chaque probabilité par son complément, c'est-à-dire 1-A et 1-B, élevé à la puissance N. Cette probabilité représente donc la probabilité que personne ne gagne après 2N parties.
Ensuite, nous cherchons la probabilité que A ou B gagne le jeu. La probabilité que A gagne est la somme des probabilités de chaque partie qu'il gagne. On factorise A et par la suite, en utilisant la formule d'une somme de suite géométrique, nous obtenons une expression de la probabilité que A gagne en fonction de A, B, et N.
Nous effectuons le même raisonnement pour la probabilité que B gagne. En utilisant le fait que la somme des probabilités de gagner pour A, B et le match nul est égale à 1, nous pouvons exprimer la probabilité que B gagne en fonction de A, B et N.
Finalement, pour que le jeu soit équilibré, il faut que la probabilité que A gagne soit égale à la probabilité que B gagne. Après simplification, nous obtenons la condition d'équilibre : A = B - AB.
Cela résume les principales idées traitées dans cet exercice sur l'indépendance et l'équilibre entre deux joueurs dans un jeu.