- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Indicatrice d’Euler
Dans cet exercice de mathématiques portant sur les probabilités, nous avons un entier N strictement supérieur à 1. On choisit de manière équiprobable un entier X parmi les entiers compris entre 1 et N. Les AM sont les événements où M est inférieur ou égal à N et divise X. B est l'événement où X est premier avec N.
Pour la première question, nous devons exprimer B en fonction des APK. Si X est premier avec N, cela signifie qu'aucun PK ne divise X. Ainsi, B est l'intersection de tous les complémentaires de AP1, AP2, ..., APR.
Ensuite, pour tout entier naturel M qui divise N, nous devons calculer la probabilité de AM. P de AM est égal au nombre de multiples de M plus petits que N, divisé par le nombre total d'entiers entre 1 et N.
Nous devons également montrer que les événements AP1, AP2, ..., APR sont mutuellement indépendants. Pour cela, nous prenons K entiers distincts parmi les nombres premiers de N. Le produit des probabilités de ces événements est égal à la probabilité de leur intersection, car les PIJ sont premiers entre eux.
En déduire la probabilité de B est simple puisque les événements sont indépendants. La probabilité de B est le produit des complémentaires des probabilités de chaque AP.
Enfin, nous notons Phi de N comme l'indicatrice d'air, c'est-à-dire le nombre d'entiers compris entre 1 et N qui sont premiers avec N. Nous voulons montrer que Phi de N est égal à N fois le produit de 1 moins chaque PK, pour K allant de 1 à R. Nous utilisons l'équiprobabilité et la probabilité de B pour montrer cela.
Voilà pour le résumé SEO friendly de cet exercice sur les probabilités !