- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Binomiale et tirage avec remise
La loi binomiale est utilisée pour modéliser des expériences avec une répétition de plusieurs essais indépendants, ayant deux résultats possibles. Pour reconnaître et utiliser cette loi, il faut identifier un schéma de Bernoulli, qui consiste en une répétition d'une même expérience, de façon indépendante et avec deux résultats possibles (échec ou réussite).
Ensuite, il faut attribuer une variable aléatoire x pour représenter le nombre de succès. Cette variable suit une loi binomiale avec les paramètres n (nombre de répétitions) et p (probabilité de succès).
La formule utilisée pour calculer la probabilité que x soit égal à k est donnée par "k parmi n" multiplié par p élevé à la puissance k, multiplié par (1 moins p) élevé à la puissance (n moins k).
Dans l'exemple donné, il s'agit de tirages successifs et indépendants où le succès est de tirer une boule noire parmi huit boules, avec trois boules noires au total. Cela correspond à une épreuve de Bernoulli avec un paramètre de p égal à 3/8. La variable x, représentant le nombre de boules noires obtenues, suit donc une loi binomiale avec les paramètres n égal à 5 et p égal à 3/8.
En appliquant la formule, on peut calculer la probabilité que x soit égal à 3, ce qui donne 20%.
Pour plus d'informations, vous pouvez consulter la FAQ.