- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Déterminer le + grand entier
Dans cette vidéo, Corentin aborde le sujet des variables aléatoires suivant des lois binomiales. Il cherche à déterminer le plus grand entier k tel que la probabilité que X soit supérieur ou égal à k soit supérieur ou égal à 0,9.
Il explique que lorsque k augmente, la probabilité que X soit supérieur ou égal à k diminue car l'ensemble des valeurs de X supérieur ou égal à k devient de plus en plus petit. Son objectif est donc de trouver le cas où la probabilité que X soit supérieur ou égal à k+1 est strictement inférieure à 0,9, et que la probabilité que X soit supérieur ou égal à k est supérieur ou égal à 0,9.
En utilisant sa calculatrice, il calcule la probabilité que X soit supérieur ou égal à 22 et obtient 0,80, ce qui ne correspond pas à sa recherche. En revanche, il remarque que la probabilité que X soit supérieur ou égal à 21 est de 0,89, et que la probabilité que X soit supérieur ou égal à 20 est de 0,95. Il conclut alors que le plus grand entier k tel que la probabilité que X soit supérieur ou égal à k soit supérieur ou égal à 0,9 est 20.