logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Déterminer le + petit entier

Dans cette vidéo, nous abordons la troisième méthode pour résoudre un problème de loi binomiale. L'énoncé nous demande de trouver le plus petit entier k tel que la probabilité que X soit inférieur ou égal à k soit supérieure ou égale à 0,5. La méthode utilisée est similaire à la méthode 2, mais cette fois-ci on raisonne à l'inverse. En effet, la probabilité que X soit inférieur ou égal à k augmente lorsque k augmente. Pour trouver la valeur de k, nous utilisons une calculatrice pour calculer les probabilités que X soit inférieur ou égal à un nombre décroissant jusqu'à trouver la probabilité souhaitée. Dans cet exemple, nous commençons avec k = 40 et trouvons que la probabilité que X soit inférieur ou égal à 40 est de 0,99, ce qui est trop élevé. Nous continuons à diminuer k et trouvons que la probabilité que X soit inférieur ou égal à 37 est de 0,96, ce qui se rapproche de notre objectif de 0,95. Finalement, nous trouvons que la probabilité que X soit inférieur ou égal à 36 est de 0,93, ce qui est inférieur à 0,95. Donc, nous concluons que la valeur de k est égale à 37.

Contenu lié