- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Matrices rotations
Dans cette vidéo, le cours porte sur le calcul avec des matrices, plus précisément sur une matrice appelée une matrice de rotation. Cette matrice relie les coordonnées cartésiennes aux coordonnées polaires en physique.
L'objectif est de calculer Aθ fois Aθ' et ensuite Aθ'. On remarque que lorsqu'on effectue une rotation de 30° puis de 50°, on obtient une rotation totale de 80°. On espère donc que le produit de rotation a une forme simple en fonction de θ et θ'.
Pour démontrer cela, on utilise une formule qui permet de reconnaitre certaines valeurs trigonométriques. En effectuant les remplacements nécessaires, on obtient A de θ plus θ'.
Ensuite, on souhaite obtenir A de θ puissance n. En utilisant à nouveau la formule avec A de θ plus θ, on obtient A de θ². Par récurrence, on peut alors écrire que A de θ puissance n est égal à A de nθ.
Il est important de bien comprendre ces concepts et d'effectuer les étapes de récurrence rapidement. Si vous avez des questions, n'hésitez pas à les poser. Au revoir et à bientôt pour une prochaine méthode.