- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Coordonnées de polynômes
Dans cette vidéo, on étudie les espaces de polynômes. L'objectif est de montrer que les polynômes P1, P2 et P3 forment une base de R²x, qui est l'ensemble des polynômes du degré 2 dans R. Pour cela, on utilise la méthode de se référer à une base connue, en l'occurrence vec(1, x, x2). On utilise deux identités remarquables, x+1 et x-1, pour montrer que vec(P1, P2, P3) est égal à vec(1, x, x2). En faisant des combinaisons linéaires, on trouve que vec(P1, P2, P3) est égal à vec(P1 + P3 - 2P2). Pour obtenir un vecteur constant, on enlève exprès -2P2. En fin de compte, on obtient que P3 - P1 est égal à 2x2 + 4x, ce qui est bien un vecteur de 1x2 x1, 1x2. Les coordonnées de ce vecteur dans la base P1, P2, P3 sont donc un quart de P1 + trois quarts de P3.