logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Ressorts verticaux

Aujourd'hui, nous avons abordé un exercice de mécanique et de théorème énergétique portant sur deux ressorts verticaux. Nous avons un système composé d'une masse ponctuelle accrochée à deux ressorts verticaux ayant la même constante de raideur (K) et la même longueur à vide (L0). La distance entre les points d'attache des ressorts (L) est fixe. Nous cherchons à déterminer l'équation du mouvement en utilisant les théorèmes énergétiques. Tout d'abord, il nous est demandé de montrer que l'énergie mécanique de la masse se conserve. Pour cela, nous devons exprimer l'énergie potentielle en fonction des grandeurs du problème. La masse est soumise à deux forces conservatrices : le poids et la force de rappel des ressorts. Ainsi, l'énergie potentielle totale peut être exprimée comme la somme de l'énergie potentielle gravitationnelle (mgz) et de l'énergie potentielle élastique des ressorts (½k (z-L0)^2 et ½k (L-z-L0)^2, respectivement). Ensuite, nous devons déterminer la position d'équilibre de la masse et discuter de sa stabilité. La position d'équilibre est l'endroit où la dérivée de l'énergie potentielle par rapport à la position s'annule. En dérivant l'énergie potentielle par rapport à z, nous trouvons que la position d'équilibre est donnée par L/2 - mg/(2k). Cette position d'équilibre est stable car la dérivée seconde de l'énergie potentielle est positive. Nous devons ensuite déduire la période du mouvement autour de la position d'équilibre en fonction de k et m. En utilisant l'approximation des petites oscillations autour de la position d'équilibre stable, nous trouvons que la période est donnée par 2π√(m/2k). Enfin, nous devons établir l'équation du mouvement à partir de l'énergie mécanique. En dérivant l'énergie mécanique par rapport au temps et en simplifiant les termes, nous obtenons l'équation du mouvement : mz'' = -mg + k(2z-L) où z'' est la dérivée seconde de z par rapport au temps. En résumé, nous avons étudié les petits oscillations autour d'une position d'équilibre stable, la stabilité de cette position et l'établissement de l'équation du mouvement à partir des considérations énergétiques.

Contenu lié