logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Expérience de Rutherford

Aujourd'hui nous abordons l'expérience de Rutherford qui consiste à bombarder des noyaux d'or avec un faisceau de particules alpha. La force répulsive qui intervient dans cette expérience est la force de répulsion coulombienne, car les particules alpha sont chargées positivement et repoussent les noyaux d'or qui sont également chargés positivement. L'expression de cette force est donnée par f = 2Ze² / (4πε0R²) selon ER. En utilisant la conservation du moment cinétique, nous pouvons montrer que la constante des aires R²θ est conservée. En observant le mouvement des particules à l'infini, nous pouvons déterminer que R²θ = VB0, où V est la vitesse de la particule à l'infini et B est le paramètre qui définit l'orbite. L'énergie mécanique de la particule est constante et peut être exprimée comme EM = ½MαR² + QQ / (4πε0R). L'énergie potentielle effective, qui permet de raconter le mouvement en une dimension, est donnée par EPF = QQ / (4πε0R). En utilisant ces expressions, nous pouvons déterminer l'ordre de grandeur de la vitesse initiale V0, qui est de l'ordre de 1,6 x 10⁷ m/s. Pour une collision frontale entre les particules et les noyaux d'or, l'énergie potentielle effective se simplifie et Rm, la distance minimale d'approche, peut être exprimée comme Rm = Ze² / (4πε0EM). En utilisant cette relation, nous pouvons obtenir une estimation de la taille du noyau. Cela permet de mesurer expérimentalement la taille des noyaux d'or.

Contenu lié