logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Suite d'Intégrales

Dans ce cours, on étudie une suite d'intégrales et on cherche à trouver sa convergence. On nous pose une suite de fonctions fn de t qui vaut 1 sur 1 plus t à la puissance n et in qui va être l'intégrale de 0 à 1 de cette fonction fn. On guide l'exercice en essayant d'encadrer cette fonction entre 1 et 1 moins t à la puissance n. La première méthode consiste à construire des inégalités. On obtient le premier bout de l'inégalité en suivant ce raisonnement : 1,5 est compris entre 1 sur 1 plus t à la puissance n qui est plus petit que 1. Pour le deuxième, on multiplie par moins 1 et on essaie de sommer avec l'autre inégalité. Quand cela ne marche pas, on fait la méthode instinctive en faisant la différence.Ensuite, on calcule l'intégrale en utilisant la linéarité de l'intégrale et on trouve l'encadrement de la suite.Finalement, on utilise le théorème d'encadrement pour montrer que la suite converge et donner sa limite qui est 1.

Contenu lié