logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
      • Dénombrement
      • Variables aléatoires
      • Concentration et Loi des Grands Nombres
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
      • Dénombrement
      • Variables aléatoires
      • Concentration et Loi des Grands Nombres
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Déterminer des ensembles

Dans ce cours sur le dénombrement, nous allons traiter des ensembles et des listes. La différence entre un ensemble et une liste est importante. Un ensemble est un sac qui contient des objets, sans ordre spécifique. Par contre, une liste est ordonnée. Pour représenter les ensembles, on utilise des accolades, tandis que les listes sont représentées entre parenthèses. Dans les exercices, il faudra toujours se demander si l'ordre compte (liste) ou non (ensemble). Dans les ensembles, lorsque l'ordre ne compte pas, on utilise des méthodes de combinatoire. Dans l'exemple donné, les ensembles E et F contiennent respectivement les éléments H, E, I et D, I, E, R. Pour l'union de ces ensembles (E U F), on prend tous les éléments sans répétition, et on obtient H, E, I, D et R. Pour l'intersection de ces ensembles (E ∩ F), on cherche les éléments communs, et on obtient seulement E. Le produit cartésien (E × F) est l'ensemble de toutes les paires d'éléments des deux ensembles, où l'ordre compte. Dans cet exemple, les paires possibles sont H D, H I, H E, H R, etc. Une paire est un ensemble de deux éléments. On peut former les paires possibles à partir d'un ensemble contenant trois éléments, ce qui donne les paires H E, H I et E I. Il est important de faire la distinction entre un ensemble et une liste pour compter les possibilités. N'hésitez pas à poser des questions si besoin.

Contenu lié