- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Déterminer la tangente à un cercle
Dans cet exercice, on étudie le concept de tangente par rapport à un cercle. Une tangente est une droite qui touche un cercle en un seul point et est perpendiculaire au rayon qui passe par ce point. On commence par trouver l'équation cartésienne d'un cercle donné et vérifier qu'un point donné appartient bien à ce cercle. Ensuite, on cherche à trouver l'équation de la tangente qui passe par ce point. On utilise le vecteur normal, qui est le vecteur orthogonale à la tangente, et les coordonnées de ce point pour trouver l'équation de la tangente. Dans cet exercice, on trouve que la tangente est une droite verticale, y égal 3. On peut utiliser ces concepts en géométrie pour résoudre différents problèmes.