- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Relation d'équivalence
Dans cette vidéo, on explore la relation d'équivalence R définie pour les ensembles des réels où X est en relation avec Y si X exponentielle de Y est égale à Y exponentielle de X. Pour montrer qu'une relation est une relation d'équivalence, il faut démontrer que la relation est réflexive, symétrique et transitive, tout comme l'égalité. La relation R est donc une relation d'équivalence.Ensuite, la question 2 demande de préciser, pour chaque réel X, le nombre d'éléments dans la classe d'équivalence de X (c'est-à-dire, combien de réels sont en relation avec X selon R). On introduit la fonction T(t) = t exponentielle de -t et on note C2x la classe d'équivalence pour X. En réarrangeant l'énoncé de la relation R, on trouve que C2x est l'ensemble Y tel que F2x égale F2y où F(t) = t exponentielle de -t.Pour trouver les antécédents de F2x (c'est-à-dire, les réels en R qui sont en relation avec X selon R), on étudie le graphe de F, qui est dérivable, et on remarque qu'il y a deux parties, X supérieur à 0 et X inférieur ou égal à 0. Pour X supérieur à 0, la classe d'équivalence a deux éléments, et pour X inférieur ou égal à 0, la classe d'équivalence a un élément. Ainsi, le nombre d'éléments dans la classe d'équivalence de X dépend du signe de X.