- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Changement de variable
Dans cette vidéo, Mathis explique comment résoudre une équation différentielle non linéaire d'ordre 1 en utilisant un changement d'inconnue. L'équation E1 est -x²z' + xz = z², et on cherche des solutions sur l'intervalle 1 à l'infini qui ne s'annulent pas sur cet intervalle. Pour linéariser cette équation, Mathis pose y = 1/z et vérifie que y est solution d'une équation différentielle linéaire d'ordre 1, E2. En résolvant E2 sur y, Mathis trouve que les solutions sont de la forme x(e^(ln(x)/a + ln(x))) avec a appartenant à R. En prenant l'inverse de cette forme de solution, il trouve les solutions de E1 sur 1 à l'infini qui ne s'annulent pas, qui sont de la forme x(x/e^(ln(x)/a + ln(x))) avec a appartenant à R+. Grâce à ce changement d'inconnue, Mathis résout une équation qui était hors de notre champ de résolution.