logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
      • Complexes : vision algébrique
      • Complexes : vision géométrique
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
      • Complexes : vision algébrique
      • Complexes : vision géométrique
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Z est-il réel ? V1

Le cours présente une méthode classique pour résoudre un exercice de complexe. L'exercice consiste à trouver l'ensemble des z tels que grand z, petit z moins 1 divisé par petit z plus 1 soit réelle. La méthode consiste à poser a et b appartenant à R, et à utiliser la propriété selon laquelle z quelconque est un réel si et seulement si la partie imaginaire de z est nulle. Les calculs sont effectués en posant petit z égal à a plus ib et en utilisant la quantité conjuguée pour simplifier l'expression. Finalement, on trouve que z est réel uniquement si b est nul, ce qui donne l'ensemble des z réels moins l'élément moins 1.

Contenu lié