• Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
      • Complexes : vision algébrique
      • Complexes : vision géométrique
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
      • Complexes : vision algébrique
      • Complexes : vision géométrique
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Equation bicarré complexe

Ce cours porte sur la résolution d'une équation bicarrée qui est une équation de degré 4 sans terme en x3 ni terme en x. On utilise un changement de variable pour se ramener à un polynôme du degré 2, que l'on peut résoudre, en complexe ou en réel. La méthode consiste à poser Z égale z2 et à résoudre pour grand Z en utilisant les racines évidentes et le produit des racines. Ensuite, on résout pour petit z en se rappelant que grand Z est égal à grand z1 ou grand z2 et en gérant la partie complexe si grand z2 est négatif. Les solutions de l'équation bicarrée sont ensuite données en fonction de racines carrées et d'imaginaires. Le fait de ne pas avoir de termes en x3 ni en x permet de se rapporter à un polynôme du degré 2 et de procéder de manière assez logique pour trouver les solutions.

Contenu lié