- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Complexes : vision algébrique
- Complexes : vision géométrique
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Complexes : vision algébrique
- Complexes : vision géométrique
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Factoriser un cube ?!
Dans cette leçon sur les complexes, il est demandé de factoriser une expression. Avant de se lancer dans la factorisation, il est recommandé d'observer les puissances successives de i pour identifier une astuce. En remarquant que 27 = 3^3 et que 8 = 2^3, et en connaissant la formule pour la somme de deux cubes, on peut exprimer 27z³-8i comme étant égal à 3z le tout au cube plus 2i le tout au cube. En appliquant la formule pour la somme de deux cubes, on peut factoriser l'expression. Cette méthode est avancée, mais elle permet de gagner du temps dans la résolution d'exercices.