Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Tous les sujets
Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSIPhysique-Chimie
Corrigés de BAC
Révisions Maths lycée
Prépa Examens
Démo infinité des premiers
Cet exercice démontre qu'il existe une infinité de nombres premiers en utilisant un raisonnement par l'absurde. On suppose qu'il n'y en a qu'un nombre fini, puis on crée un ensemble de nombres premiers qu'on multiplie ensemble et à qui on ajoute 1 pour créer un nouveau nombre, P étoile. On montre ensuite, en montrant qu'aucun nombre premier n'est un diviseur de P étoile, qu'il n'existe aucun indice tel que Pi divise P étoile. Mais en utilisant le critère d'arrêt, on montre qu'il existe un nombre premier P i qui divise P étoile, ce qui contredit ce qu'on a trouvé à la question 1. Cela implique qu'il existe une infinité de nombres premiers et qu'on a donc démontré l'exercice en question.