- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
- Généralités sur les Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
- Généralités sur les Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Déterminer une loi
Dans cet exercice, on part de l'ensemble de nombres 1 à n et on cherche à trouver une probabilité proportionnelle à k² pour avoir l'ensemble 1 à k. On utilise la variable λ pour représenter cette probabilité et on sait que la probabilité d'avoir juste k est égale à λk² moins λ(k-1)². Après développement, on obtient 2λk-1 comme probabilité d'avoir juste k.
On sait également que la probabilité d'avoir tout l'ensemble de 1 à n est égale à 1. En utilisant cette information, on peut déduire que λ est égal à 1/n². Ainsi, la probabilité d'avoir juste k parmi les nombres 1 à n est égale à (2k-1)/n². Voilà en résumé l'exercice.