logo

Terminale

Première

Seconde

MPSI/PCSI

2BAC SM Maroc

Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Équations polynomiales

Dans cette vidéo, Paul explique comment résoudre des équations du second degré à coefficients complexes, ainsi que des équations qui s'en rapprochent. Pour la première équation, la technique est similaire à la résolution d'une équation réelle, en trouvant les valeurs de Z1 et Z2. Pour la deuxième équation, qui est déguisée en une équation du second degré, Paul pose X = Z3 et résout l'équation pour trouver les solutions de X. Ensuite, il résout l'équation E1 pour trouver les solutions de Z3, en utilisant la racine 1ème de l'unité. Au final, il obtient 6 solutions qui correspondent au polynôme initial de degrés 6.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Équations algébriques avec des complexes

Dans cette vidéo, Paul résout un exercice sur la résolution d'équations algébriques dans le domaine des complexes. La première question consiste à résoudre l'équation Z sur Z-1 puissance n égale à 1 dans C. Si n est égal à 0, tout Z est une solution, sinon, les solutions sont les racines énièmes de l'unité. Dans la deuxième question, Paul observe que l'équation Z plus i puissance n égale à Z moins i puissance n admet n moins 1 solutions réelles. En isolant Z, il utilise la formule de l'angle moitié plus les angles de l'air pour obtenir les solutions, qui sont les complexes si n est égal à 0 et les racines tangentes si n est supérieur à 0.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Trigonométrie avec les complexes

Dans cette vidéo, Paul explore le lien entre les nombres complexes et la géométrie, en se concentrant sur un pentagone inscrit dans un cercle unité. Il commence par donner les affixes des sommets du pentagone, qui sont les racines 5ème de l'unité. Il montre ensuite que la somme de ces affixes est égale à 0. En utilisant cette propriété, il déduit que le cosinus de 2π/5 est une solution d'une équation et calcule sa valeur. Il calcule également des longueurs en utilisant les formules trigonométriques et remarque que cos(π/10) est égal à cos(2π/5). Ensuite, il résout un problème de géométrie en calculant la longueur BI plus la longueur IJ. Enfin, il explique comment construire un pentagone régulier à l'aide d'un cercle et de symétries.