- All subjects
- All subjects
Maths Spé
Probabilités
Terminale
Seuil de probabilité
Ce sous-chapitre traite des intervalles de fluctuation en relation avec les variables aléatoires et la loi binomiale. Il est essentiel de modéliser des événements et des probabilités dans la vie réelle, et cette modélisation peut être vérifiée avec des intervalles de fluctuation. Grâce à ces tests, on peut déterminer si une modélisation est effectivement précise ou non. À titre d'exemple, en supposant que x est le nombre de spectateurs, s'il y a moins de 10 personnes, une pièce de théâtre ne sera pas jouée. En utilisant la méthode des intervalles de fluctuation et des informations pertinentes sur les paramètres de la loi de probabilité et le seuil, on peut déterminer si la troupe est susceptible de jouer avec un intervalle de confiance de plus de 95%. En fin de compte, les intervalles de fluctuation peuvent être utilisés pour évaluer les modèles probabilistes dans la vie réelle.
Maths Spé
Probabilités
Terminale
Déterminer un intervalle de fluctuation
Nous cherchons à déterminer un intervalle de fluctuation centré pour une variable aléatoire X, avec n = 40, p = 0,2 et α = 0,05. Pour cela, nous calculons α/2, soit 0,025. Nous cherchons ensuite deux bornes k et i, telles que P(X<k) > 0,025 et P(X<i) > 0,025. Nous sommes ainsi en mesure de déterminer que k = 3 et i = 13. L'intervalle de fluctuation centré associé à X au seuil 0,095 est donc de 3 à 13, ce qui signifie que nous avons 95% de chances que X se situe dans cette plage.
Maths Spé
Probabilités
Terminale
Classique : efficacité d'un médicament ?
L'exercice consiste à calculer l'intervalle de fluctuation centré au seuil de 95% pour un médicament qui est efficace à 90% en prenant 400 patients malades. La loi G suit une loi binomiale de paramètres n égale 400 et p égale 0,9. On utilise la méthode de tâtonnement pour trouver la plus petite valeur de G telle que p de G inférieure à K, soit plus petite que 0,025 et la plus petite valeur de K telle que p de G inférieure à K soit inférieure à 0,975. On trouve que 95% de chance que le nombre de patients guéris soit situé entre 87% et 92,5%. L'hypothèse est donc validée et la borne inférieure de l'intervalle est de 87%. C'est un exercice typique de calcul d'intervalle de fluctuation pour l'efficacité d'un médicament.