logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Introduction Convergence

Dans ce nouveau sous-chapitre sur les limites de fonctions, nous abordons des concepts plus pratiques et concrets. Il est important de connaître par cœur certains tableaux de fonctions de référence, par exemple la limite de 1 sur x en plus infini. Nous étudions également comment combiner des limites, par exemple la limite de f plus g. Certaines situations, comme lorsque f tend vers plus infini et g tend vers moins infini, nécessitent une étude plus approfondie. Nous examinons le rapport f sur g et le produit f fois g, en appliquant des règles spécifiques. Il y a quatre formes indéterminées pour lesquelles il n'y a pas de règles préétablies. Nous abordons également les théorèmes de convergence, tels que le théorème des gendarmes, dans lequel deux fonctions encadrent une troisième fonction pour la mener vers la même limite finie. Le théorème de comparaison est utilisé pour les limites infinies, où si une fonction f est inférieure à une fonction g et que f tend vers plus infini quelque part, g la suit également. Nous parlons également de la croissance comparée, en se concentrant sur l'exponentielle et discutons de la limite de composé, qui permet de gérer des fonctions complexes. Il faut également connaître les tableaux de référence pour les fonctions de référence, les opérations sur les limites et les quatre formes indéterminées. En termes de méthode, nous apprenons à gérer les formes indéterminées en utilisant des techniques telles que le terme du plus haut degré et la méthode de quantité conjuguée. En conclusion, en maîtrisant ces points de cours et les méthodes associées, vous serez prêts à aborder les différentes limites qui vous seront présentées. N'hésitez pas à poser des questions dans la FAQ si nécessaire.

RELATED