logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Tableaux : combiner des limites

La prochaine étape consiste à étudier les limites des fonctions, notamment les limites d'une somme et d'un produit. Il existe plusieurs cas simples à prendre en compte. Lorsque deux fonctions, f et g, tendent chacune vers une limite L et L', respectivement, la limite de leur somme est L + L' et la limite de leur produit est L * L'. Ensuite, si L est une limite finie et qu'il est ajouté ou soustrait à une limite infinie, c'est toujours l'infini qui l'emportera. Pour le produit, cela dépendra du signe de L. Si L est positif, la limite tendra vers l'infini inversé, alors que si L est négatif, la limite tendra vers l'infini. Il faut garder à l'esprit que ces exemples suivent des règles de signes : plus et plus font plus, plus et moins font moins, et moins et moins font plus. Les cas où il est écrit "fi" représentent des cas indéterminés, c'est-à-dire des situations où il est impossible de déterminer la limite. Ces cas incluent la multiplication de 0 par l'infini et l'addition de plus l'infini et moins l'infini. Une forme indéterminée signifie qu'il n'y a pas de règle générale qui s'applique dans toutes les situations. Pour illustrer cela, prenons l'exemple de l'addition de plus l'infini et moins l'infini. Selon les fonctions choisies, comme x, x^2 et x, les résultats peuvent varier et seront sans rapport les uns avec les autres. C'est ce qui rend une forme indéterminée : il n'y a pas de résultat prédéterminé, tout peut se produire. En ce qui concerne le quotient, si l'on divise deux fonctions f et g, on obtient une limite l sur l'axe des x et L' sur l'axe des y, si f et g tendent respectivement vers L et L'. Il existe des règles évidentes à suivre : si la limite de f est L et la limite de g tend vers l'infini, le résultat sera très grand, donc la limite sera de 0. Si la limite de f est L et la limite de g est 0, le résultat sera plus ou moins l'infini, comme nous l'avons déjà vu avec l'exemple de 1/x. En conclusion, il existe deux formes indéterminées à retenir : 0 sur 0 et plus l'infini sur plus l'infini. Ces formes indéterminées peuvent donner différents résultats selon les fonctions choisies. Il est important de s'entraîner à créer des exemples simples pour bien comprendre ces concepts. Il est également crucial de se rappeler que les formes indéterminées signifient qu'il n'y a pas de règle générale, et que tout est possible. En résumé, les formes indéterminées sont les aspects les plus importants à retenir lors de l'étude des limites des fonctions.

RELATED