- All subjects
- All subjects
Dérivée n-ième difficile
Dans ce cours, nous étudions la dérivée n-ième d'une fonction en utilisant la formule de Leibniz. Nous cherchons à trouver des relations récursives entre les dérivées n-ièmes successives.
La question principale est de savoir à quoi ressemble la dérivée n-ième de la fonction f(x) = e^x + x^2. Nous voulons montrer que cette dérivée peut être exprimée sous la forme d'un polynôme Pn(x) = 1 + x^2)^n+1. Pour cela, nous utilisons une récurrence et nous essayons de trouver une relation entre Pn+1(x) et Pn(x) en utilisant la dérivée de Pn(x).
Il s'avère que trouver directement Pn(x) est fastidieux, mais nous trouvons une relation en dérivant n fois la fonction f(x) et en simplifiant les termes. En utilisant la formule de Leibniz, nous trouvons une expression plus simple pour Pn'(x) en fonction de Pn-1(x).
Après avoir initialisé la récurrence et montré l'hérédité, nous dérivons l'expression de Pn+1(x) et simplifions les termes. Finalement, nous obtenons une expression pour Pn'(x) en utilisant la formule de Leibniz.
En dérivant l'expression n fois, nous trouvons que la dérivée n-ième de f(x) est égale à une somme de termes impliquant Pn(x), Pn-1(x) et Pn-2(x).
En remplaçant les expressions de Pn+1(x), Pn(x) et Pn-1(x), nous obtenons une relation finale entre Pn'(x) et Pn-1(x).
Bien que les calculs puissent paraître complexes, la formule de Leibniz avec des polynômes nous permet de simplifier les termes jusqu'à obtenir des relations claires entre les dérivées n-ièmes successives.