logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Continuité en un point

Dans cette vidéo, Paul nous parle de la continuité de la fonction g définie sur R. La fonction g est définie comme suit : - g(x) = 1/|x| si x n'est pas égal à -1, 0 ou 1 - g(x) = 0 si x est égal à -1, 0 ou 1 Tout d'abord, on étudie la continuité de g sur R privé de -1, 0 et 1. On remarque que g ne s'annule pas sur R privé de -1, 0 et 1, donc la fonction x1 sur le diagramme de valeur absolue de x est continue sur -1, 0 et 1. Donc, g est continue sur R privé de -1, 0 et 1. Ensuite, on étudie la continuité de g en -1, 0 et 1. Pour cela, on calcule les limites de g lorsque x tend vers -1, 0 et 1. La limite de g(x) quand x tend vers 0 avec x différent de 0 est égale à la limite de 1/|x| quand x tend vers 0, et cette limite est égale à 0, qui est la valeur de g(0). Donc, g est continue en 0. Par contre, la limite de g(x) quand x tend vers 1 avec x différent de 1 est égale à la limite de 1/|x| quand x tend vers 1, et cette limite est égale à l'infini. Donc, g n'est pas continue en 1. De la même manière, g n'est pas continue en -1, car la limite de g(x) quand x tend vers -1 avec x différent de -1 est également infinie. Ainsi, on conclut que g est continue sur R privé de -1 et 1. C'est la fin de cet exercice, à bientôt pour une prochaine vidéo !

RELATED