logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Anneaux d’entiers

Dans cette vidéo, Corentin discute d'un exercice mathématique portant sur un ensemble noté Z racine de 2. Il commence par expliquer l'énoncé de l'exercice, qui consiste à montrer que Z racine de 2, muni des opérations de l'addition et de la multiplication, forme un anneau. Il explique ensuite qu'il est plus rapide et intuitif de montrer que Z racine de 2 est un sous-anneau de R plus, c'est-à-dire que les éléments de Z racine de 2 appartiennent à R plus et que les opérations de plus et de fois sont stables dans Z racine de 2. Il montre que Z racine de 2 vérifie ces conditions et conclut donc que c'est un anneau sous R plus. Ensuite, il introduit une fonction n qui associe à chaque élément A plus B racine de 2 de Z racine de 2, la valeur A carré moins 2B carré. Il souhaite montrer que cette fonction est multiplicative, c'est-à-dire que n de xy est égal à n de x fois n de y pour tout x et y dans Z racine de 2. Il effectue le calcul correspondant et montre que cette égalité est vérifiée. Enfin, il utilise cette fonction n pour trouver les éléments inversibles de Z racine de 2. Il explique sa méthode d'analyse synthèse, qui consiste à supposer qu'un élément x est inversible et à voir quelles conditions cela impose sur x. Il trouve que les éléments inversibles de Z racine de 2 sont ceux de la forme A plus B racine de 2 tels que A carré moins 2B carré est égal à plus ou moins 1. Corentin conclut en résumant les étapes clés pour trouver les éléments inversibles de Z racine de 2 et en soulignant l'importance de vérifier que les éléments trouvés appartiennent bien à Z racine de 2.

RELATED