- All subjects
- All subjects
Un paramètre dans une équation de cercle
Le cours traite de la résolution d'une équation qui pourrait potentiellement avoir une forme de cercles. Après avoir étudié les termes impliquant x, l'équation peut être réécrite sous la forme d'un cercle si la quantité a² - 4 est positive stricte. Dans le cas où a² - 4 est égal à zéro, deux points de solution sont trouvés, et s'il est négatif, alors l'ensemble des solutions est vide. En résumé, la solution pour a est un cercle si a est plus grand que 2 ou plus petit que -2, deux points si a est égal à 2 ou -2, et l'ensemble vide pour tout le reste. La clé pour résoudre l'équation est d'appliquer la méthode appropriée, de discuter de la positivité ou de la négativité du rayon, et d'examiner l'existence ou non d'une solution.