- All subjects
- All subjects
Avec condition initiale
Dans cette vidéo, Mathis de Studio résout deux problèmes de Cauchy, qui sont des équations différentielles linéaires d'ordre 1 avec des conditions initiales. Pour résoudre chacune de ces équations, il utilise la méthode de la solution homogène et de la solution particulière en appliquant la variation de la constante. Pour la première équation, il trouve que l'ensemble des solutions ne contient qu'un seul élément. Pour la deuxième équation, il trouve également qu'il n'y a qu'une seule solution qui vérifie la condition initiale. La méthode pour la solution particulière et l'importance de sommer les solutions homogènes et particulières avant d'appliquer la condition proposée sont soulignées.