logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes

Transformer puis primitiver

Dans ce cours, nous allons voir comment trouver une primitive à partir d'une fonction pour laquelle il n'est pas évident de la trouver. La méthode consiste à identifier la fonction sous la forme d'un produit et à utiliser la décomposition en éléments simples pour les fonctions rationnelles. Dans le premier exemple, la fonction étudiée est f(x) = 3x² + 2x³ + 2x. Nous cherchons à l'exprimer sous la forme "u' fois u". En observant la fonction, nous remarquons que nous pouvons prendre u(x) = x³ + 2x. En dérivant u(x), nous obtenons u'(x) = 3x² + 2, ce qui correspond exactement à la partie "u'" que nous cherchions. Ainsi, la fonction peut s'écrire comme u'(x) * u(x), où u(x) au carré serait une primitive de f(x). En poursuivant, nous cherchons une primitive de f(x) qui prend la valeur 5 pour x = 1. Nous savons que les primitives sont de la forme f(x) + k, où k est une constante réelle. Nous imposons la condition que la primitive prenne la valeur 5 pour x = 1. Après calculs, nous trouvons que k = 1/2. Donc la fonction recherchée est 1/2 * x³ + 2x² + 1/2. Dans le deuxième exemple, nous étudions une nouvelle fonction g(x) qui est également un produit, mais cette fois au dénominateur. Nous utilisons la méthode de décomposition en éléments simples pour transformer la fonction en une somme. Après calculs, nous trouvons que g(x) peut s'écrire comme -1/x + 1/(x-1). Ensuite, nous cherchons la primitive de g(x). Nous calculons la primitive de chaque terme de la somme, ce qui nous donne -ln|x| + ln|x-1|. Cependant, il est important de noter que la primitive de 1/x est ln|x| pour x>0, et ln|x-1| pour x>1. Donc, pour éviter les valeurs absolues, nous pouvons écrire la primitive de g(x) comme ln(x) - ln(x-1) pour x>1. En conclusion, ces deux méthodes nous permettent de trouver des primitives en identifiant des produits et en utilisant la décomposition en éléments simples pour les fonctions rationnelles.

Contenu lié