- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Suites numériques
- Limite et continuité
- Dérivation et étude de fonctions
- Primitives et EDL
- Calcul intégral
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Changement de variables 2
Dans cette transcription d'une vidéo sur les changements de variables en calcul d'intégrales, nous abordons trois exemples.
Le premier exemple concerne l'intégrale de 0 à 1 de 1/(1+exp(t)) dt. On pose x = exp(t) et on utilise la formule de changement de variable pour obtenir l'intégrale de 1 à e de 1/(x+x^2) dx. On calcule cette intégrale en décomposant la fraction en éléments simples et en utilisant des propriétés des logarithmes. Finalement, on trouve que l'intégrale demandée est égale à 1 + ln(2) - ln(e+1).
Le deuxième exemple concerne l'intégrale de 1 à 3 de sqrt(t)(t+1) dt. On pose x = sqrt(t) et on obtient l'intégrale de 1 à sqrt(3) de x^2/(1+x^2) dx. On remarque que le numérateur et le dénominateur se ressemblent beaucoup, on utilise donc la technique du "1 plus 1 moins 1" pour obtenir une intégrale en arctan. Finalement, on trouve que l'intégrale demandée est égale à sqrt(3) - 1 - pi/12.
Le troisième exemple concerne l'intégrale de -1 à 1 de sqrt(1-t^2) dt. On pose t = sin(θ) et on obtient l'intégrale de -pi/2 à pi/2 de sqrt(1-sin^2(θ)) cos(θ) dθ. On utilise ensuite des formules trigonométriques pour simplifier l'intégrale. Finalement, on trouve que l'intégrale demandée est égale à pi/2.
Il est important de retenir la méthode pour traiter les fractions polynomiales et de s'adapter aux différentes situations de changement de variable. La dynamique est similaire à celle des intégrations par parties, il faut suivre les étapes dans l'ordre et tester différentes approches si nécessaire. Merci d'avoir suivi cette vidéo et à bientôt !