logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Affixe, vecteurs et complexes

Ce cours résume comment associer un nombre complexe à un point du plan en utilisant les coordonnées A et B, correspondant à la partie réelle et imaginaire du nombre complexe. On peut également associer un vecteur OM à un point M et, de la même manière, un point M à un nombre complexe Z. Ainsi, un nombre complexe Z peut être représenté par un point du plan égal au vecteur OM. De plus, on peut traiter un point comme un nombre complexe et extraire un nombre complexe à partir d'un point dans le plan. Une autre propriété importante est que pour un vecteur AB du plan, on peut associer un nombre complexe Z égal à ZB-ZA, où ZB et ZA sont les affixes respectives des points B et A. Cette propriété permet de déterminer si un quadrilatère est un parallélogramme en comparant les affixes des vecteurs AB et DC. Pour illustrer ce concept, un exemple pratique est présenté, où l'on doit trouver les coordonnées d'un point D pour que ABCD soit un parallélogramme. En utilisant les affixes des vecteurs AB et DC, on résout l'équation et trouve les coordonnées de D. Cette méthode est équivalente à l'utilisation des vecteurs et permet d'appréhender le sujet de manière progressive.

Contenu lié