logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

elements réguliers

Dans cette vidéo, Corentin aborde un exercice théorique portant sur un groupe fini G. Il est demandé de démontrer qu'il existe un élément X dans G qui est différent de l'élément neutre E et égal à son inverse. Corentin commence par utiliser des sous-parties de G pour exploiter l'hypothèse que le cardinal de G est pair. Il pose l'ensemble f(X) qui est égal à l'ensemble des éléments X multiplié par leur inverse. Ensuite, il remarque que pour des éléments X et Y distincts, les ensembles f(X) et f(Y) sont soit distincts soit confondus. Plus précisément, soit f(X) est égal à f(Y) ou l'intersection de f(X) et de f(Y) est un ensemble vide. En effet, si Y est égal à X-1 (l'inverse de X), alors l'ensemble f(X) est égal à l'ensemble f(Y). Si Y est différent de X-1, alors l'intersection de f(X) et de f(Y) est un ensemble vide. De là, Corentin déduit que le groupe G peut s'écrire comme une réunion disjointe de tous les ensembles f(X) différents. En d'autres termes, G est égal à l'union de tous les ensembles f(X) pour X appartenant à G et différent de l'élément neutre. Corentin réalise que au moins l'un de ces ensembles f(X) est de cardinal 1, c'est-à-dire qu'il ne contient qu'un seul élément. Il s'agit de l'ensemble f(E). En effet, on a E-1 qui est égal à E, ce qui réduit l'ensemble f(E) à juste l'élément E. Si tous les autres ensembles étaient de cardinal 2, alors le groupe G aurait un cardinal impair, ce qui contredit l'hypothèse de départ selon laquelle le cardinal de G est pair. Il en conclut donc qu'il existe un élément X différent de l'élément neutre E tel que le cardinal de l'ensemble f(X) soit égal à 1, autrement dit, X est égal à son inverse.

Contenu lié