- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Pendule simple
Dans ce cours, nous examinons le pendule simple et cherchons à déterminer son équation du mouvement. Le pendule simple se compose d'un fil attaché à une masse, et nous repérons sa position par l'angle theta.
En appliquant le principe fondamental de la dynamique et en faisant un bilan des forces, nous avons le poids orienté vers le bas et la tension du fil qui maintient la bille attachée. En coordonnées polaires, nous utilisons les dérivations des vecteurs de base, ce qui simplifie les calculs.
Nous obtenons les équations suivantes : -ML*theta point carré = P*cos(theta) - T et ML*theta seconde = -P*sin(theta). L'équation qui permet de déterminer la tension du fil est T = P*cos(theta) - ML*theta point carré.
L'équation du mouvement du pendule simple est donnée par theta seconde + (G/L)*sin(theta) = 0. En utilisant l'approximation des petits angles, où sine theta est approximativement égal à theta, nous obtenons l'équation d'un oscillateur harmonique : theta seconde + (G/L)*theta = 0.
La constante propre de cet oscillateur harmonique est la racine carrée de G/L.
J'espère que cela vous a été utile et je vous retrouve bientôt pour la suite.