logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Continuité et Suites 2

Dans ce cours, nous étudions les suites définies par récurrence, en nous intéressant à leur limite. Nous commençons par associer une fonction f à la suite, telle que n+1 soit égal à f(n). Pour résoudre cette équation, nous devons étudier la continuité de f. Pour ce type d'exercice, la continuité de f est essentielle. Ensuite, nous résolvons l'équation f(x) = x pour trouver les valeurs possibles de la limite de la suite. Nous étudions également la dérivabilité de f. Il est important de noter que f peut ne pas être définie en certains points, ce qui impacte sa croissance. Nous passons ensuite à la démonstration par récurrence que 0.5 < u1 < u1+1 < 3. Nous utilisons la propriété de croissance de f pour composer avec l'hypothèse de récurrence. Nous concluons que la suite est croissante et bornée. En utilisant ces informations, nous déduisons que la suite converge vers une limite L. Enfin, nous soulignons l'importance de la continuité de f pour pouvoir affirmer que la limite est bien une solution de l'équation f(x) = x.

Contenu lié