- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Suites
- Limites des Fonctions
- Continuité et Dérivabilité
- Dérivation
- Convexité
- Logarithme
- Fonctions Trigonométriques
- Primitives & Équations Différentielles
- Calcul Intégral
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Ln : Limites
Nous allons voir comment calculer des limites qui font intervenir la fonction ln. Pour cela, nous allons utiliser le principe de factorisation du terme prédominant et nous allons essayer de nous ramener à des limites usuelles en utilisant les propriétés sur le logarithme.Pour la première limite, nous avons 2 ln(x²) - 5 ln(x) + 1. En factorisant par le terme prédominant ln(x²), nous obtenons 2 - 5/ln(x) + 1/ln²(x), qui tendent toutes vers 0, donc la limite est plus l'infini.Pour la deuxième limite, qui est du ln(√x)/ln(2x), qui tend vers l'infini, nous utilisons les propriétés sur le logarithme pour transformer √x en x^(1.5) et obtenir 1.5 ln(x)/ln(2) + ln(x)/ln(2). En factorisant par le terme prédominant ln(x), nous obtenons 1.5 + ln(2)/ln(x), qui tend vers 1.5.Enfin, pour la dernière limite, qui est (x-1)² ln(x-1) quand x tend vers 1, nous posons grand x = x-1 pour obtenir x² ln(x). En séparant le x, nous obtenons x * x ln(x), qui tend vers 0, donc la limite recherchée est égale à 0.Si vous avez des questions, n'hésitez pas à consulter la FAQ.