- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Dénombrement
- Variables aléatoires
- Concentration et Loi des Grands Nombres
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Tirage successif sans remise
Dans ce cours, nous abordons le concept de tirage successif sans remise. L'énoncé nous donne un exemple concret : nous avons 5 élèves qui se tiennent en rang et nous voulons savoir combien il y a de façons de les ranger. Pour résoudre ce problème, nous devons d'abord nous poser quelques questions. Est-ce une liste ou un ensemble ? Y a-t-il des répétitions possibles ?
Dans ce cas, il s'agit d'une liste car l'ordre compte. Par exemple, l'ordre "1, 2, 3, 4, 5" est différent de "5, 4, 3". De plus, il n'y a pas de répétition possible car nous ne pouvons pas avoir deux fois le même élève à la même position.
Maintenant que nous avons clarifié ces points, la résolution devient assez simple. Pour la première position, nous avons 5 choix possibles. Pour la deuxième position, une fois que nous avons placé quelqu'un, nous n'avons plus que 4 choix. Et ainsi de suite, jusqu'à la dernière position où nous n'avons plus qu'un seul choix. Nous multiplions donc ces choix successifs : 5 x 4 x 3 x 2 x 1, ce qui est égal à 5!.
Cette formule générale s'applique également lorsque nous avons P tirages successifs sans remise dans un ensemble à N éléments. Nous pouvons l'exprimer comme suit : N! sur N-P!.
En résumé, pour résoudre le problème des tirages successifs sans remise, nous utilisons la formule N! sur N-P!.