logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

TVI et calculs costauds !

La fonction f(x) = 2/(e^x + e^(-x)), où x appartient à R, est étudiée dans ce cours. Après une analyse graphique, il est montré que cette fonction admet une seule solution sur R à l'équation f(x) = x. Ensuite, la fonction g(x) = f(x) - x est introduite. Les limites de g(x) lorsque x tend vers plus l'infini et moins l'infini sont calculées, confirmant que g(x) tend vers 0 dans les deux cas. La deuxième partie du cours consiste à montrer que g(x) est décroissante. D'abord, l'idée de représenter g(x) comme une somme de fonctions décroissantes est évoquée, mais est rejetée car f(x) n'est pas décroissante. Par conséquent, le calcul des dérivées est utilisé pour déterminer que g(x) est décroissante. En fin de compte, il est prouvé que g(x) est strictement décroissante, et un tableau de variations de g(x) est dressé pour montrer qu'il n'y a qu'une seule solution à l'équation f(x) = x, ce qui confirme les résultats obtenus précédemment.

Contenu lié