- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Tentative d'expliciter une suite récurrente
Ce cours traite de la recherche d'une valeur initiale U0 pour une suite mathématique qui sera constante ou arithmétique. Si Une suite est constante, cela signifie que pour tout entier n, Un+1 = Un = U0. En résolvant l'équation U0/(10/7-U0) = U0, nous trouvons que deux valeurs pour U0 donnent une suite constante: 2 et 5. Si une suite est arithmétique, alors Un = U0 + nR, où R est la différence constante entre les termes. En utilisant la notion de limites, nous trouvons que si R est différent de zéro, alors la suite ne peut pas être arithmétique. Nous en concluons qu'il n'existe pas de valeur possible pour U0 qui donne une suite arithmétique.