logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
      • Produit Scalaire
      • Géométrie avec Repères
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
      • Produit Scalaire
      • Géométrie avec Repères
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Définition de base : avec projeté

Le cours traite des propriétés fondamentales du produit scalaire. Le produit scalaire est défini comme le produit de deux vecteurs, qui est égal à la norme des vecteurs s'ils sont dans le même sens et moins le produit des deux normes s'ils sont dans des sens opposés. Si les vecteurs ne sont pas alignés, le produit scalaire sera égal à la version projetée du vecteur sur l'autre. Le cours utilise l'exemple d'un losange pour illustrer ces concepts et calcule plusieurs produits scalaires en utilisant la projection. Il rappelle également que le produit scalaire de deux vecteurs est nul s'ils sont orthogonaux. Enfin, le cours insiste sur l'utilité de la projection pour calculer des produits scalaires plus facilement.

Contenu lié