- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Définition avec des coordonnées
Cette méthode utilise deux formules de produits scalaires pour calculer un angle entre deux vecteurs dans un repère orthonormé. La formule pour trouver le produit scalaire est U scalaire V égal à la coordonnée de U multipliée par la coordonnée de V, soit le produit de leurs abscisses plus le produit de leurs ordonnées. Pour trouver l'angle NMP, on doit calculer les coordonnées de MN et MP, puis calculer leur produit scalaire. En utilisant la formule cosinus=NMP/∥ MN ∥∥ MP ∥, on peut trouver la valeur du cosinus de l'angle et l'approximer à 0,01° près. La méthode peut être utilisée pour résoudre des exercices de mathématiques de différents niveaux.