- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Continuité et température terrestre
Dans cet exercice, nous cherchons à prouver qu'il existe toujours deux points sur l'équateur ayant la même température. Pour ce faire, nous considérons la température comme une fonction continue de la longitude, T(x), qui est périodique de période 2π. Nous cherchons donc à trouver un x tel que T(2x) = T(2x+π), ce que nous traduisons en T(2x) - T(2x+π) = 0. Nous posons la fonction f(x) = T(2x) - T(2x+π), qui est continue et périodique, et cherchons deux points, x0 et x1, tels que f(x0) > 0 et f(x1) < 0. En utilisant la périodicité de T, nous trouvons x1 = x0+π tel que f(x1) = T(2x1+π) - T(2x1) = -f(x0). Nous appliquons le théorème des valeurs intermédiaires pour conclure qu'il existe un x2 sur l'équateur tel que T(2x2) = T(2x2+π), prouvant ainsi notre hypothèse initiale.