- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Fonction réciproque
Dans ce cours, Corentin aborde le thème des fonctions à une variable réelle. Il commence par expliquer qu'il va montrer que la fonction f, qui est un polynôme de degré 3, admet une fonction réciproque g sur R. Il montre ensuite que g est dérivable sur R et exprime sa dérivée, g', en fonction de g. Ensuite, il démontre que g est deux fois dérivable sur R et exprime g'' en fonction de g. Enfin, il donne la valeur de g'' évaluée en 0.
Pour montrer que f admet une fonction réciproque g, Corentin utilise le fait que f est continue et dérivable sur R. Il montre que f est strictement croissante sur R et qu'elle tend vers plus l'infini en plus l'infini et vers moins l'infini en moins l'infini. Il conclut que f est bijective de R dans R, ce qui implique qu'elle admet une fonction réciproque g.
Ensuite, Corentin démontre que g est dérivable en utilisant un rappel qui stipule que si f est dérivable et bijective, avec f' strictement positif sur son domaine de définition, alors sa fonction réciproque g est dérivable sur l'image du domaine de définition de f par f. Il montre que les hypothèses sont vérifiées dans le cas de f, donc g est dérivable et g' est égal à 1 sur f' composé avec g. Il remplace ensuite cette expression par une formule spécifique à f, et en dérive pour obtenir l'expression de g'.
Enfin, Corentin détermine g' évaluée en 0 en remplaçant g' par cette valeur et obtient que g'(0) est égal à moins 1 sur 36.