- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Tangente
Dans cet exercice, nous cherchons à démontrer l'existence d'une unique tangente commune aux courbes d'équation y = x² et y = 1/x. Pour cela, nous commençons par rappeler l'équation d'une tangente en A, qui est f '(A) * (x - A) + f '(A). Nous posons ensuite f(x) = x² et A ∈ R. La tangente à f en A est donc égale à 2Ax - A². De même, nous posons h(x) = 1/x et nous calculons la tangente de h en B en dérivant pour avoir le coefficient directeur. Nous trouvons ainsi que la tangente de h en B est égale à -x/B² + 2B. Pour que les tangentes coïncident, nous égalisons les coefficients directeurs et les ordonnées à l'origine. Ainsi, nous obtenons 2A = -1/B² et -A² = 2/B. Il est important de noter que A et B sont des inconnus qu'il faut déterminer. En résolvant le système linéaire et en factorisant, nous trouvons que A = -2 et B = -1.5. Nous vérifions alors que les tangentes en A = -2 et B = -1.5 coïncident.