- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Equation fonctionnelle
Dans cette vidéo, l'objectif est de résoudre une équation fonctionnelle. On nous demande de trouver toutes les fonctions continues de 0,1 dans R qui vérifient pour tout x appartenant à 0,1 f de x sur 2 plus f de x plus 1 sur 2 est égale à 3 f de x. Pour démarrer, le speaker teste différentes fonctions classiques. Il montre que f égale à 0 fonctionne et décide alors de prouver par l'absurde que f ne peut être égal qu'à 0. Après avoir montré que f est bornée et atteint ses bornes, il utilise la supposition par l'absurde pour montrer que f ne peut être égal qu'à 0. La preuve est simple, le maximum ou le minimum de f doit être différent de 0, sinon f serait égale à 0. S'il est différent de 0, cela mène à une contradiction, montrant ainsi que f doit être égal à 0.