• Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
      • Divisibilité et Congruences
      • PGCD
      • Théorèmes de Bézout et de Gauss
      • Nombres Premiers
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
      • Divisibilité et Congruences
      • PGCD
      • Théorèmes de Bézout et de Gauss
      • Nombres Premiers
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Congruence : équation degré 2

Dans cet exercice, nous devons résoudre l'équation x²-2x2 congrue à 0 modulo 17. Tout d'abord, il est demandé de montrer que α = 5 est une solution de l'équation, ce qui est vérifié en remplaçant x par 5. Ensuite, en posant x = x-α, nous pouvons trouver toutes les solutions de E. En faisant cela, nous obtenons l'équation x + 5 au carré - 2(x + 5) + 2 congru à 0 modulo 17, que nous simplifions pour obtenir grand x carré + 8x congru à 0 modulo 17. En factorisant, nous pouvons dire que 17 divise soit x, soit x+8. Ainsi, nous avons deux possibilités : x est congru à 5 modulo 17 ou x est congru à 14 modulo 17. Donc, les solutions de E sont x congru à 5 modulo 17 ou x congru à 14 modulo 17.

Contenu lié