- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Sous-espace engendré
Dans cet exercice, nous devons trouver des valeurs réelles pour que certains vecteurs appartiennent à un ensemble F, qui est le sous-espace vectoriel engendré par deux vecteurs. Ce sous-espace est en réalité un plan de taille 2, formé par toutes les combinaisons linéaires de ces deux vecteurs.
Pour résoudre ce problème, nous posons un système d'équations où nous cherchons à déterminer les constantes alpha et bêta, qui permettront de créer des combinaisons linéaires pour que le vecteur lambda mu-37-3 appartienne à F. Cependant, les calculs peuvent devenir compliqués en raison de la présence du terme -37.
Nous utilisons les deux premières lignes du système comme contraintes pour trouver les valeurs uniques de lambda et mu, une fois que nous avons trouvé alpha et bêta. Les deux dernières lignes du système sont deux équations qui nous permettent de déterminer les valeurs de alpha et bêta.
En résolvant le système, nous trouvons les valeurs de bêta (moins 126 sur 47) et d'alpha (247 sur 47). Bien que ces valeurs puissent sembler compliquées, elles nous permettent d'obtenir les seules valeurs possibles de lambda et mu pour que le vecteur soit inclus dans F.
Les valeurs trouvées pour lambda et mu sont respectivement moins 5 sur 47 et une expression complexe. L'astuce de cet exercice est de ne pas paniquer face à la présence de lambda et mu, mais plutôt de suivre la même démarche en introduisant alpha et bêta pour obtenir une combinaison linéaire et ensuite analyser les conditions qui déterminent les valeurs de lambda et mu.
Cet exercice sert à clarifier les détails de la résolution de problèmes similaires et à vérifier si vous maîtrisez bien les étapes nécessaires. Il est important de ne pas paniquer et de prendre la liberté de poser des éléments supplémentaires pour résoudre le problème.
J'espère que ce résumé vous a aidé et je vous retrouve dans une prochaine vidéo. Au revoir !