logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Courbe et Tangentes

Ce cours traite de l'étude du logarithme et de sa tangente en un point précis. On nous demande de trouver l'équation de la tangente au point d'abscisse 1. La fonction logarithme est dérivable sur R*, sa dérivée est 1/x et évaluée en 1, cela donne 1. La position relative de la courbe par rapport à sa tangente peut être déterminée en étudiant la concavité de la fonction. La dérivée seconde est 1/x^2 et est strictement négative pour tout x positif. Cela signifie que la fonction est concave et donc en dessous de toutes ses tangentes, y compris celle au point d'abscisse 1. Une autre approche consiste à étudier les variations de la fonction en calculant sa dérivée. On pose une fonction auxiliaire g(x) = ln(x) - x + 1. En étudiant le signe de g'(x) = 1/(x-1), on peut construire un tableau de variations qui montre que g(x) est inférieure à 0 pour tout x, avec égalité en x=1. En conclusion, la tangente au point d'abscisse 1 de la fonction logarithme a pour équation y = x - 1. Il est préférable de considérer la concavité de la fonction pour déterminer la position relative de la courbe par rapport à sa tangente.

RELATED