- All subjects
- All subjects
Distance d'un point à un plan
Le cours traite de la méthode classique pour déterminer la distance entre un point et un plan dans l'espace. La distance minimale entre le point et le plan est appelée distance entre un point et un plan. La distance minimale est obtenue en effectuant une projection orthogonale du point sur le plan. Une formule, souvent apprise par cœur, permet de calculer cette distance. Elle utilise les coordonnées du point et un vecteur normal au plan. Dans le cours, un exemple est donné pour illustrer le calcul de la distance entre un point et un plan en utilisant cette formule. Le point C est donné, ainsi qu'un vecteur normal au plan. En utilisant les coordonnées du point et le vecteur normal, on peut exprimer les coordonnées du point H, qui est le projeté orthogonal du point C sur le plan. La distance entre le point C et le plan est ensuite calculée en utilisant la norme du vecteur résultant. La formule détaillée ainsi que les calculs sont expliqués pas à pas dans le cours.